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ABSTRACT

We present an architecture for a trustworthy and portable
emulation platform designed to protect the confidentiality
and integrity of sensitive born-digital content when executed
on a fundamentally untrustworthy platform. In evidence, we
present a modified GameBoy emulator which is executable
on a remote user platform while simultaneously protecting
the contents of game ROM files. In a more general applica-
tion, an archive or a library might use such an emulation
architecture to control access to restricted material on more
sophisticated computer emulators.
Our solution relies on Intel’s Software Guard Extensions

(SGX) technology for implementation of the trusted emu-
lation environment. Access to sensitive data is protected
by server controlled encryption keys accessible only within
the protected execution environment. This enables secure
caching of encrypted data on the untrusted user platform for
use by the emulator and hence limits the potential perfor-
mance issues originated from remote execution over Internet
connections.
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1 INTRODUCTION

This paper provides a technological solution to a fundamen-
tal problem faced by libraries and archives with respect to
digital preservation — how to allow patrons remote access
to digital materials while limiting the risk of unauthorized
copying. The solution we present allows patrons to execute
trusted software on an untrusted platform; the example we
explore is a game emulator which provides a convenient
prototype to consider many fundamental issues.

Examples of born-digital content include commercial and
academic publications, such as interactive CDROMs as well
as the archived works of writers and statesmen. For example,
Emory University provides access to the processed portions
of Salman Rushdie’s digital archive, and an interactive sim-
ulation of Rushdie’s original computing environment[16].

Access is only possible via an emulator located on a dedi-
cated workstation in the reading room that limits access to
the content.
While emulation is the main preservation strategy for

legacy applications that require obsolete software for access
[10, 28–30, 36, 37, 43], the approach we propose can also be
used to secure access born-digital contents that are not being
preserved by emulation platforms. For example, consider the
case of PDF documents: while PDF encryption is widely sup-
ported [44] accessing such documents requires distributing
keys; the approach we propose might be used to execute a
trusted PDF viewer on an untrusted platform that is able to
verify the untrusted platform and protect keys/documents.

One fundamental limitation of our approach is that any-
thing the user is allowed to view or hear could be captured
through screenshots or audio recordings. That is, our solu-
tion is susceptible to attacks on the output devices, just as all
traditional digital-rights management systems are. However,
this is an issue with current solutions even within the con-
fines of a library or archive, unless patrons are strictly mon-
itored (e.g. by impounding cell phones). Our solution does
enable a new use case for born-digital sharing, even if tight
controls are necessary — archives with restricted reading
rooms might use our approach to safely share materials with
other archives that provide similar physical security. The
architecture can also be used to protect the content against
unauthorized access from servers that provide web/cloud
based emulation services.
Figure 1 illustrates the major components of the type of

system we explore: an emulator, executing on the client side,
accesses secure storage containing both the emulation sys-
tem software stack (e.g. a disk image containing an operating
system) and any digital content to be accessed. Because we
cannot guarantee the security of the client operating sys-
tem or file storage, we require a trusted emulator that has
controlled access to any secured materials. Our proposed
architecture is based upon several key assumptions:

• The remote platform is under full control of the user, and
the institution does not trust any of its software or hard-
ware components. Therefore, establishing trust between
the server and client is essential. Trust establishment al-
lows the server to look at the execution platform and verify



key properties that are required for the trusted application
to protect its secrets on the remote platform. For example,
in our solution, the server needs to verify that the remote
platform uses a real SGX enabled CPU.
• The emulator provided by the source institution runs on

the remote platform and relies on its resources. This means
that the emulator is managed by the untrusted client-side
operating system, which itself may have been subverted
by malware.
• All sensitive materials on the server-side storage are en-
crypted, and there is a secure protocol to transmit the
encrypted files and keys from the server to the emulation
client after trust establishment.

Figure 1: Generic system architecture

Delivering sensitive content to an untrustworthy remote
platform is very challenging. Solutions that rely only on data
encryption and access control mechanisms are vulnerable
to several software and hardware attacks. For example, a
compromised OS may steal encryption keys and disk image
contents from a running emulator. This paper will address
the following security problems:

• Trustworthy Emulator

The emulator core, which has access to keys and
unencrypted security sensitive data, is meant to be
kept private from the user on the client side. There-
fore, such data and keys must be secured by the
emulator. The emulator should also support on-the-
fly decryption/encryption of data stored on the local
file system (see Figure 2).
• Trust Establishment

The server should be able to authenticate the user
and verify his/her platform before exchanging keys
and encrypted files (see Arrows (1) and (2) in Figure
2). The server should also be able to ensure that
the client’s trusted emulator behaves correctly. That

Figure 2: Generic security model

means the client should be able to attest to the fact
that all requirements (e.g., running a right version of
the emulator) for the emulator to behave as expected
(e.g., protecting the restricted data) are satisfied.

Many different methods for solving both of these prob-
lems have been proposed [5, 6, 8, 12, 19, 20, 25, 26, 33, 34], but
mostly they are based on modified OS, hypervisor, or com-
piler. Our approach relies only on Intel SGX hardware sup-
port that provides protected execution environments called
enclaves. The enclaves allow execution of software within
them such that others, including the owner or administrator
of the machine, cannot peer into or modify–it is as if the
code executes in an impenetrable black box. SGX further
provides a hardware-based mechanism to attest to the soft-
ware running in the enclave. All Intel Skylake processors
support SGX, and thus it should be widely available in the
future. At the time of writing this paper, The firmware(BIOS)
and the drivers required for SGX are available for Windows
and Linux operating systems. Applications that use SGX are
currently most easily developed in the C/C++ languages, as
Intel has released development tools for them.

The direct interface through assembly is both documented
and possible, suggesting that a large number of development
tools will be developed in due time. In section 3.1 we sum-
marize SGX functionality related to our work. Although our
solution relies on SGX, one may consider using other trusted
execution environment (TEE) solutions such as ARM Trust-
Zone technology[1] to implement our architecture.

As a concrete example of the proposed system architecture,
we developed a prototype of our solution using GearBoy, an
open source emulator for GameBoy. The GearBoy architec-
ture is described in Section 3.3. While developing this system,
our focus was to protect materials on the client side and we
assumed a trusted server. However, the proposed techniques
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can easily be applied to protecting resources on server-side
and dedicated workstations as well.
The remainder of this paper is organized as follows. We

begin with a review of related work in Section 2. For back-
ground, in Section 3 we explain required security concepts
and the basic architecture of GearBoy, the GameBoy emu-
lator. Next, in Section 4 we describe the architecture of our
trustworthy emulator which is utilizing trusted hardware
based enclaves. Finally, implementation details and results
are provided in Section 5.

2 RELATEDWORK

We survey related work in two areas: emulation as a digital
preservation technique and systems that execute on and
protect applications from an untrusted OS.
Emulation as a digital preservation technique

Emulation has been successfully tested to provide access to i)
obsolete software and hardware systems [4, 7, 27, 32, 35], ii)
preserved digital artifacts [3, 22, 31], and iii) console games
[11, 23]. However, there are fundamental problems that must
be resolved when providing remote access to sensitive pre-
served content.
One approach to provide remote access to born-digital

materials is via a remote desktop or web-based access to em-
ulation environments. The bwFLA project [27] implements a
distributed framework and a networked approach, where the
emulators run in a well-controlled environment. GRATE [38]
provides a web-based remote emulation. The GRATE server
is responsible for session management (managing VNC ses-
sions, executing emulators, etc.) and transporting uploaded
digital objects into the emulated environments. Although
these systems can reduce technical hurdles on the client’s
side, they provide limited security and are not practical so-
lutions for highly sensitive collections. For example, it is
possible to steal the digital objects from the servers through
RDP/VNC vulnerabilities [39].
The KEEP project[4] transfers a complex service stack

(it consists of a core application, a software archive, and
emulator archive) to the remote user, but doesn’t address the
security issues considered in this paper.
Systems to protect apps from an untrusted OS

Considerable effort in the research community have been
devoted to protecting security-sensitive applications from a
compromised OS (or other privileged system code) running
on an untrustworthy platform[2, 5, 6, 8, 12, 18–20, 47]. While
these works have resolved many of the issues, they have
many drawbacks that need to be addressed.

Many of the solutions rely on trusted hypervisors to pro-
tect applications from a malicious OS [5, 12, 34, 46, 47]; how-
ever, they do not offer any protection against a compromised

hypervisor. Our solution does not need a trusted hypervi-
sor but does require SGX support, which has a smaller and
more securely deployable code-base in comparison (small
code bases developed by high-quality teams, e.g. Intel, are
more amenable to the application of development tools and
techniques). Among the proposed secure systems, some incur
huge performance loss due to the costly encryption/decryption
operations [5, 12, 20], or they require significant modifica-
tions to legacy applications [19, 20]. Another major approach
is isolating applications in a dedicated VM [8, 34], which dra-
matically increases the size of trusted computing base (TCB)
and therefore weakens their security strength. Systems like
Haven[2] shields applications from an untrusted OS using a
secure library OS, based on Drawbridge [24], which works
inside an enclave. A library OS is a lightweight OS that runs
in the address space of an application and only supports the
minimal OS features which the application depends on. The
approach taken by Haven requires building a customized
libraryOS to support legacy emulator/application dependen-
cies and also has a large TCB size.

3 BACKGROUND

In this section, we briefly describe SGX and its features used
in developing our trusted emulator. We also review the trust
establishment problem and explain how SGX’s attestation
capability can be used to solve this problem. Finally, we
briefly describe the GameBoy emulator architecture that we
modified to build our trusted emulator. It is important to
note that while our work builds upon Intel-specific features,
it is reasonable to assume that this or equivalent features
will be commonplace in the near future.

3.1 Software Guard Extensions (SGX)

The key technology that we exploit in implementing our
system is Intel Software Guard Extensions (SGX)[21] that
is a new technology added to the Intel Skylake family of
processors to aid in trusted computation on remote platforms.
SGX provides a set of new instructions and new memory
access protections for the Intel x86 computing architecture.
Collectively these extensions enable the creation of so-called
“enclaves”. These are figurative black boxes in which secure
code can be loaded and executed; even the operating system
— the ultimate arbiter and controller of the machine— cannot
peer into the box to inspect computation or its memory
accesses. Through an attestation process, remote entities
can confirm that particular code is running in the enclave.
In the most recent application development tools, enclaves
are introduced to developers through a metaphor of trusted
shared libraries.

Because enclaves isolate sensitive code and associated data
from the host environment, they can securely handle secrets
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without fear of release to the host. In particular, enclaves are
useful for managing cryptographic keys.
The mechanisms for how SGX protects the integrity and

privacy of programs executing within an enclave are quite
technical, but at a high-level, the CPU ensures that processes
outside of the enclave do have access to read or manipu-
late the data within an enclave. This is done using physical
capabilities provided by CPU (i.e., the CPU’s architecture
and microcode), and by ensuring that all memory reads and
writes are encrypted and authenticated using cryptographic
methods. This is implemented using a secret-key that is cre-
ated on the CPU, and is only accessible to it—that is, it is
not even directly accessible within the enclave to programs
operating within it.

Figure 3: SGX-enabled application model

An SGX-enabled trustworthy application is formed by two
classes of trusted and untrusted components (see Figure 3).

• Trusted component

The application’s trusted code (i.e., the code that
has access to and processes the application’s secrets)
which works inside an enclave. A trusted application
can have several trusted components that reside in
one or more enclaves. If necessary, multiple enclaves
can arrange to communicate amongst themselves
securely.
• Untrusted component

The application’s code that doesn’t process sensi-
tive data and doesn’t need to be protected inside an
enclave.

Untrusted code creates and runs the enclave which is
placed in the protected memory. When a trusted function
is called, only the code running inside the enclave sees the
sensitive data in a non-encrypted form, and any external
access to the data is denied. An enclave only returns trusted
function results to the untrusted component and the enclave
data remains in the trusted memory.

3.2 Trust Establishment

This section includes technical details about how SGX can
be used for trust establishment. Consider the scenario in
which a trusted application (in our case an emulator) behaves
correctly on a real SGX enabled platform and can protect
sensitive data while being processed. When the application is
running on an untrusted platform, the application’s provider
needs mechanisms to verify the integrity of the remote plat-
form and assure that it has not been tampered with. For
example, the provider may need to verify that it is commu-
nicating with a real SGX-enabled platform and not with a
malicious SGX emulator. It also needs to be able to ensure
that the application behaves correctly and as expected, and
hence, will be able to protect the critical information. After
this verification step, it will be safe for the provider to send
its encrypted data/ key, via a secure channel (established by
traditional public-key cryptographic mechanisms and with
different keying data than those needed for the emulator),
to the remote platform to be processed by the trusted appli-
cation.
Providing secrecy of computation is important for our

goals, but without a mechanism for ensuring that the code
one believes is running in an enclave is the actual code run-
ning, secrecy is meaningless. For example, if the enclave can
be loadedwithmalicious code that would “export” secret data
outside of an enclave to a waiting malicious machine, then
secrecy inside the enclave has achieved little. Unsurprisingly,
SGX provides mechanisms to demonstrate that the trusted
components of an application have been properly instanti-
ated and are securely running within enclaves on a valid
Intel SGX-enabled platform. These attestation mechanisms
use two measurement registers provided by SGX to uniquely
distinguish each enclave based on its code, data, and author.
The measurements are created by using cryptographic hash
functions which provide what are essentially unique “finger-
print” values. These values are recorded when the enclave is
built, and are finalized before enclave execution starts. The
CPU then uses a signing key that is i) unique to the CPU; ii)
secret and known to no others; and iii) physically burned into
the CPU upon its creation. It performs something similar to a
digital signature1 of the unique fingerprint that was created
from the measured code in the enclave [14, 15]. Intuitively,
this signature allows an initiating party to verify that the cor-
rect code has been loaded into an enclave. The signature is
verified by confirming from Intel that the signature is indeed
valid, and thus that the loaded code is as declared.

1Due to the goal of providing privacy, an actual digital signature is not used,

but a digital signature is a good first approximation.
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Figure 4: SGX-based attestation and sealing

A service provider (institutions, libraries, and archives)
may utilize attestation to establish secure communication
with a remote platform and provision sensitive materials
such as encryption keys to the enclave through a secure
channel.

The following example contains technical details that non-
technical readers may safely skip.
Consider the scenario, illustrated in Figure 4, in which

the application contains two trusted modules, Enclave 1 and
Enclave 2 that are running on the same platform. For exam-
ple, in our trusted GameBoy implementation, one enclave
is responsible for trust establishment and key exchange be-
tween the service provider and the user. The other enclave
contains the secured emulator modules that are responsible
for protecting ROM files. The two enclaves can verify and
authenticate with one another before exchanging informa-
tion (see Arrow (2) in Figure 4). This process is called local
attestation and is different, but related to the previous attes-
tation methods discussed. After the two enclaves verify that
their counterpart is trustworthy, they can exchange infor-
mation on a secure channel, which provides confidentiality
and integrity protection. The local attestation and protected
channel establishment use the Diffie-Hellman Key Exchange
protocol. After local attestation, the two enclaves trust each
other, but the server still needs to verify the trustworthiness
of the platform/application before exchanging any secrets.

The server only needs to perform remote attestation with
one of the enclaves, Enclave 1 in our example (see Arrow
(1) in Figure 4). After the attestation phases, each enclave
receives secrets via a secure channel. Next, each enclave can
securely encrypt (using a hardware-based encryption key)
and store its sensitive data outside the enclave (e.g., on a
disk) such that the data can be retrieved only by itself or
a trusted enclave (sealing phase, see Arrows (3) and (4) in
Figure 4).

Figure 5: GameBoy emulator architecture

3.3 Generic GameBoy Emulator
Architecture

In this section, we describe a generic GameBoy emulator
architecture and how our trusted emulator architecture can
be implemented on it.

The key modules we describe here are part of the trusted
or untrusted parts of our trusted emulator. Game Boy is a
video game console, originally developed and manufactured
by Nintendo in 1989 [40]. There are different GameBoy mod-
els. Figure 5 shows the essential components of a GameBoy
emulator.
The emulator core contains the major emulated modules

of a real GameBoy console. The core includes one or more
emulated CPU models. Usually, the CPU is based on a subset
of the Zilog Z80 microprocessor and has instructions and
registers similar to the Intel 8080 and Intel 8085. It has eight
8-bit registers and two 16-bit registers (SP and PC) [17].
The core contains different memory modules such as video
RAM or graphics memory. The amount of such memory is
very small (e.g., less than 1MB). GameBoy has no operating
system. Therefore, it operates by storing all system functions
inside a game ROM cartridge which contains the game’s
program and data. The cartridge may use memory bank
controllers (MBCs) to switch between memory banks and
control backup RAM. An emulated cartridge loads a video
game’s ROM file and maps it to the emulator memory.

Video and audio controllers generate the video/audio tim-
ings and read video/audio data from memory in order to out-
put it to screen. The drivers may depend on cross-platform
multimedia libraries like SDL[42] to display video/audio.
The core contains all modules that directly access and

process ROM files —the secrets we want to protect,— so they
should be protected and secured in any emulation. There is
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a narrow interface to connect the emulator core to the rest
of the emulator. The non-core parts of the emulator imple-
ment the graphical user interface and IO operations. These
portions don’t need to be secured in our model. Through the
interface, the trusted and untrusted components communi-
cate in a way that no secret from the trusted code can leak
out to the untrusted part.

4 TRUSTWORTHY EMULATOR
ARCHITECTURE

In this section, we explain the following key components of
our secure emulation architecture, and how these compo-
nents operate to provide the security level needed for remote
accessing to restricted materials (see Figure 6). We begin
with a description of a threat model for our system.

4.1 Threat Model

Our goal is to allow possessors of private digital-born media
to be able to share this over an untrusted Internet to a for-
eign client location so that it can be viewed on an emulator
at a foreign site. The emulator will provide the appropriate
output (audio and video), and those channels are not secured
by our system. The assumption is that the foreign client
may have malicious software, and be operated by malicious
operators. The goal is that the system keeps any data oth-
erwise private. We do not protect against physical attacks
which are able to decompose the physical CPU and retrieve
physical information that is embedded in the device or oth-
erwise physically alter the execution of the CPU via some
physical attack. We assume that the possessor has some way
of authenticating the foreign-site to ensure that they are
talking to the correct individual; this is traditionally done
through password or public-key infrastructure. We also do
not provide security against software attacks running on
the machine that makes use of memory-page lookups, or
timing and cache side-channels. Such attacks are known to
be plausible[45], but they require software which explicitly
targets the emulator in question and the software running
under emulation. These attacks are expensive, as they must
be specifically targeted at the emulator in question, and re-
quire more technical sophistication than traditional software
exploits on the part of the authors. Therefore, such exemp-
tions in the threat model really should provide substantial
improvements in real-world security. Further, countermea-
sures are actively being developed for these attacks which
can be incorporated into our model at a future date.

4.2 Key Components of Emulation
Architecture

The key components of our emulation architecture are ex-
plained in this section.

Trusted Emulator: The emulator contains a trusted com-
ponent which is hosted inside a secure enclave and it is
responsible for protecting the restricted data from the un-
trusted platform.
Authentication and Verification (AV): The server needs
to setup an AV module on both the client and server to
authenticate the user and verify untrusted platform. These
AV modules are responsible for trust establishment, and to
perform a key exchange between the server and client.
Secure Remote File Access: The server needs to provide
access to the encrypted files, i.e. sensitive materials we want
to protect, via a secure remote file system.

In this architecture, the restricted content provided by
the server is encrypted, and the encrypted files and keys
will be provisioned to the client after the establishment of
trust. On the client side, only the trusted modules, which are
working inside SGX enclaves, have access to the keys and
unencrypted data. We now elaborate on each component.

4.3 Trusted Emulator

The trusted emulator should be able to protect the sensitive
data on the client platform by processing the data inside
secured enclaves. In our architecture, only the trusted com-
ponent executes inside an enclave and thus has access to
restricted content. The trusted component includes the core,
the trusted interfaces, and the security module (see Figure 6).
The core, which is responsible for processing ROM files,

contains the emulated cartridge, processor, registers, mem-
ory, and video/audio controllers (see Figure 5). The core
communicates outside the enclave through narrow trusted
interfaces. The untrusted component is responsible for cre-
ating the core enclave and passing the encrypted data to the
core to be processed, and thus no enclave protection is nec-
essary. It also includes the emulator graphical user interface
(GUI).

Since the restricted materials are encrypted by the service
provider, we add a security module to the trusted component
which is responsible for on-the-fly encryption/decryption
of the data inside the enclave, allowing the core to access
the decrypted data, but never making it available outside an
enclave. The enclave re-encrypts any data that it needs to
store on the local file system. It seals keys and encrypted
files before shutting the emulator down (destroying the en-
clave). Sealing is the process of encrypting enclave secrets to
disk for long term storage. Encryption of these keys makes
use of long-term secret keys embedded in the CPU, created
randomly and burned into it at manufacturing time.
The security module gains access to the keys after en-

suring the AV enclave is trusted and running in the same
SGX enabled platform through a local attestation during the
emulator setup phase. In the local attestation process, two

6



Figure 6: Trustworthy emulator architecture

enclaves executing on the same platform can verify and au-
thenticate with one another before exchanging information
(see arrow (2) in Figure 4).

4.3.1 Authentication and Verification. The AV modules
(on the server and client side) are responsible for establish-
ing trust between the server and remote platform. The client
AV module has a trusted component, called the AV enclave,
which is responsible for secure session establishment, attes-
tations and key exchange/store in the remote platform. First,
the client AV launches the trusted emulator and ensures the
trusted emulator’s enclave is instantiated correctly through
a local attestation– refers to two enclaves on the same plat-
form authenticating to each other, (see Arrow (2) in Figure 6).
After the local attestation with the emulator’s enclave, the
client AV enclave generates a verifiable report of the client
identity and the emulator’s enclave. This report is gener-
ated and signed by an architectural enclave, called a quoting
enclave, and bound to the client platform by the CPU. The
server uses this report to verify the platform/emulator on
the client side through a remote attestation (see Arrow (1)
in Figure 6). In this process, the server verifies the remote
attestation report generated by the AV enclave to ensure that
is communicating with a real SGX-enabled machine and the
user is authorized to access the materials on the specified
platform.

Remote attestation requires establishing a secure commu-
nication session between the client and server to securely
exchange the secrets. The secure session establishment is
done via traditional public-key cryptography (analogous to
how the SSL handshake includes both authentication and
session establishment).

After a successful remote attestation, the server provides
access to encrypted digital objects and provisions the keys
to the AV enclave. The keys would be securely stored and
only accessible by the AV enclave and emulator’s enclave
using the SGX sealing mechanism (e.g., sealing by signing
identity). Since the keys are securely stored, there is no need
to repeat the attestation and secret provisioning steps every
time the emulator is restarted on the platform. However, if
one wants to insert policies on use, it is certainly possible to
change the architecture so that there could be provisioning
from the provider server on each initiation, or on a regular
time period.

4.3.2 Secure Remote File Access. After a successful re-
mote attestation, the server provides secure access to the
encrypted files via mounting of a secure remote file system
on the local platform (see Arrow (3) in Figure 6). For exam-
ple, in our implementation, the trusted emulator uses SSHFS
(SSH Filesystem) that is a filesystem to mount and interact
with files located on a remote server via the SSH file transfer
protocol (SFTP), a network protocol providing secure file
transfer and a secure remote file system. SSHFS authenti-
cates and encrypts connections. Thus, only those who should
have access to remote directories can mount them. Files are
encrypted inside such secure remote file system, and only
the enclaves (the AV and emulator’s enclave) have access to
the keys and can decrypt the data.

5 IMPLEMENTATION AND RESULTS

We implemented a prototype of the system on a platform
with Skylake processor and SGX-enabled BIOS support. We
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started with an open-source GameBoy emulator, called Gear-
boy [9], and added the trusted component and the AVmodule
to it.
Designing the trusted GameBoy using SGX requires con-

sidering fundamental decisions that affect both (1) the se-
curity properties of the system, such as the TCB size and
the exposed interface to the enclave’s outside world, and (2)
the performance, mostly due to the restrictions of SGX such
as unsupported system calls. Therefore, the most important
step in developing the system is refactoring the emulator
into the trusted and untrusted components and designing the
trusted interfaces to connect them. Besides the system design
trades-off, refactoring process can also be challenging be-
cause of strong dependency between the core and untrusted
modules.
As Figure 5 demonstrates, the trusted core includes the

cartridge, processor, registers, memory, and video/audio con-
trollers. In our work, we assume no secrets are displayed
to the user. However, since the Video/Audio drivers have
direct access to the emulated processor, memory and reg-
isters, we added the Video/Audio controllers and the main
frame-buffers to the trusted core to decrease security risks
against the core and improve performance by decreasing
the interaction between the core and the untrusted world.
Having minimal interfaces is also important for step-by-step
debugging the system and ensure its correctness. The un-
trusted component includes the graphical user interface, IO
modules, and SDL library which are not hosted inside the
enclave.
The untrusted part is responsible for creating enclave

pages using the ECREATE instruction, loading the trusted
code and data into the enclave using the EADD instruction,
updating the enclave’s measurement for the attestation phase
using the EEXTEND instruction, and initializing the enclave
using the EINIT instruction. Then a process can execute the
enclave’s code using the EENTER instruction and leave it
using the EEXIT instruction. Because SGX does not sup-
port many legacy (frequently insecure) standard C library
functions, system-calls, and some of the user-mode instruc-
tions [13, 21], one of the main challenges in our work was
re-implementing a large part of the core to use the Intel’s
provided trusted libraries or providing trusted interfaces for
accessing the unsupported system-calls or instructions. For
Example, SGX does not support IO operations inside an en-
clave; so we developed a trusted interface for the basic file
operations used by the core. Following the same approach,
we provided trusted interfaces for accessing SDL library and
Qt framework [41] (that are not trusted) from the core en-
clave. The emulator depends on SDL and Qt for providing the
GUI, displaying video/audio, and keyboard/event handling.
To ensure no secret from the trusted core can leak out

to the untrusted part, the trusted interfaces are designed in

a manner that requires carefully validating all the inputs
and outputs of the trusted interfaces within the enclave. To
detect unauthorized input from outside into the enclave, we
check the correctness of the input based on its type. As a
simple example, in the case of numerical input, we can verify
its range, length boundaries, and value before it is processed
by the trusted code. A similar approach is considered for
validating outputs from enclave to the untrusted domain.

The emulated cartridge loads encrypted ROMs from the
secure remote file system through the trusted IO interface.
The security module has access to the keys and is respon-
sible for decrypting ROMs after being loaded by the ROM
loader and encrypting them before writing to the local file
cache. Therefore ROMs would be unencrypted only inside
the enclave and encrypted before storing outside the enclave.
The security module uses Intel’s trusted OpenSSL library
(topenssl) for cryptographic operations inside the enclave.

Refactoring of the emulator to fitwith the trusted/untrusted
partitioning and provide the needed SGX support increased
the lines of code (LOC) by ≈ 15%. Less than 10k LOC were
added to enclaves, so while an enclave’s trusted storage is
limited (128MB at most) it is more than enough for many
similar emulators.
For performance evaluation, we first compare running

time of the original emulator with the trusted emulator,
both executing the same (not encrypted) ROM file, with-
out enabling the on-the-fly encryption/decryption support
for the trusted emulator. This evaluation shows the running
time of our trusted emulator increased by 8.6X . In the sec-
ond evaluation, we compared the two emulators, but this
time we enabled the trusted emulator on-the-fly encryp-
tion/decryption support. In this case, the trusted emulator
performance decreased by 9.4X . Our analysis shows that the
main performance cost is because of the IO and cryptogra-
phy operations from inside enclaves during the startup and
shutdown phases.

Finally, we developed the client AV module using the Intel
Elliptical Curve Diffie-Hellman (ECDH) key exchange library
to establish a trusted channel between the two enclaves (the
security module is responsible for the local attestation) and
attest the trusted emulator locally. For remote attestation, it
uses the Intel’s key exchange and remote attestation library.

6 CONCLUSION

This paper introduces a secure, trustworthy and portable
emulation architecture for digital preservation to provide
a secure remote access to restricted born-digital materials
while protecting the confidentiality and integrity the sensi-
tive data. Our solution is built on top of Intel SGX which is
the state-of-the-art technology in trustworthy computing.
We developed a trusted GameBoy emulator as a proof of

concept. However, our solution can be used to build more
8



general-purpose trustworthy digital preservation platforms
with reasonable performance overheads. For example, we
have been working on developing a trusted classic MacOS
emulator by modifying Basilisk emulator (a popular classic
MacOS emulator). The trusted Basilisk is designed to pro-
tect confidentiality and integrity of restricted disk images
while processing them on an untrusted platform. Similar
to the trusted GameBoy architecture, our trusted Basilisk
architecture has a trusted core and an untrusted compo-
nent which are connected by narrow trusted interfaces. The
trusted Basilisk core, whichworks inside an enclave, contains
the 68k CPU engine (including the interpreter, CPU/FPU em-
ulator, and memory management), the ROM and resource
patches, and some of the drivers (including the VHDdisk, CD-
ROM, and video drivers). The untrusted component includes
the remained modules. As an example, Emory University
could use the trusted Basilisk to provide remote access to the
processed portions of Salman Rushdie’s digital archive[16],
while protecting the digital archive from unauthorized copy-
ing. To protect confidentiality and integrity of the restricted
disk images, the trusted Basilisk core loads encrypted disk
images from a secure file system and decrypt them inside the
emulator core enclave and encrypts the data while writing
the modified images back to a local cache.
An institution can use such trustworthy emulation plat-

forms to provide a secure remote access to restricted born-
digital content while protecting the confidentiality and in-
tegrity of the sensitive data while being processed on an
untrusted platform.

Our solution can also be used for providing secure remote
access to born-digital documents that do not depend on em-
ulation platforms. For example, a service provider can use
a similar architecture to develop a trusted PDF viewer to
protect confidentiality and integrity of sensitive documents
while being processed on an untrusted platform. Basically,
PDF is a container that includes information about how to
layout and organize contents to display. The core functional-
ity of a trusted PDF viewer that needs to be protected inside
and enclave is the process of rendering (encoding image in-
formation) the contents of a PDF file into a display format;
Usually, PDF viewers depend on PDF rendering libraries
or SDKs to render PDF contents. The PDF viewer needs to
provide trusted interfaces to access such untrusted libraries
from the enclave.
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