

VIENNA UNIVERSITY OF

Using Utility Analysis to Evaluate and Compare **Preservation Strategies**

Carl Rauch, Andreas Rauber Vienna University of Technology http://www.ifs.tuwien.ac.at

Motivation

We have

- collections with different file formats and preservation requirements
- myriads of potential preserveration approaches (various converters, emulators, metadata schemes,...)
- We need
 - a structured approach to selecting and evaluating preservation solutions, rather than un-transparent "out-of-the-guts" decisions

Outline

Introduction

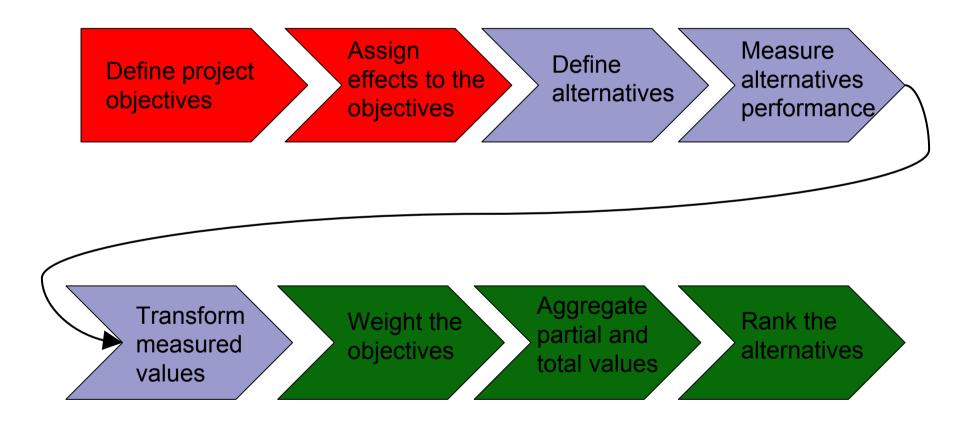
Utility Analysis

Set objectives

Evaluate alternatives

 \Box Define preferences and decide \blacktriangleright

Summary

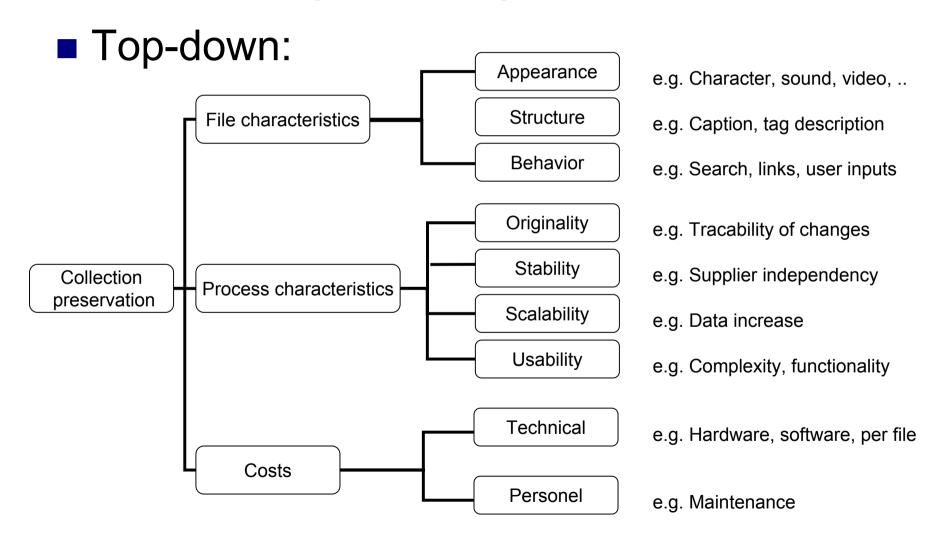

Selecting a preservation strategy

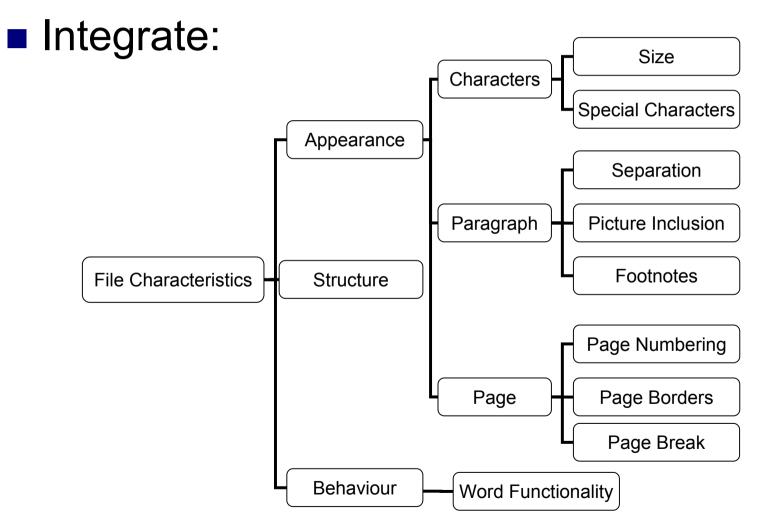
Problem	Requirements	
 Several preservation strategies, none excels in all circumstances Different requirements for different collections 	 Strategies that suit different requirements Means to make strategies comparable 	 Generic framework, which can be easily applied to specific environments
Steady change and development of strategies and tools	 Measures to be equally applicable to new preservation strategies Structured approach 	Decision support system, which clearly ranks possible preservation solutions

Utility Analysis

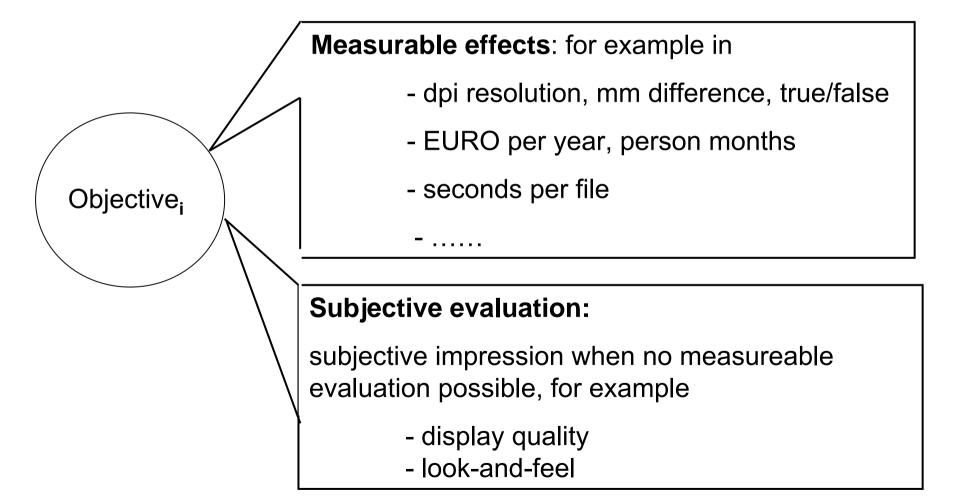
- Developed in the 1970s
- Applied mainly for infrastructure projects, such as dams, bridges, neighbourhoods
- Flexible and expandable
- Adapted to fit the preservation requirements

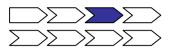
Utility Analysis Procedure



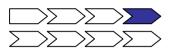

- Collect set of project objectives
- Include all requirements and desiderata
- Rather complex, extensive
- Procedure:
 - Bottom-up approach: brainstorming session
 - □ Top-down approach:
 - according to generic objective tree
 - □ Structure as an *Objective Tree*

Bootom-up:

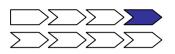




Assign effects to objectives


Listing Alternatives

Migration and Standardisation


- Migrate documents to Adobe PDF using XXX
- Migrate documents to OpenOffice 1.0
- Migrate documents to PostScript using XXX
- Migrate documents to MS Word 2003
- Encapsulation
- Hardware Museum
- **...**
- Maintain current strategy
- No action

Alternatives' evaluation

- Select files for evaluation
 - Original files from collection
 - □ Files from a testbed
- Ensure that they cover collection characteristics
- Perform preservation steps according to list of alternatives
- Measure results

Alternatives' evaluation

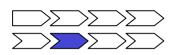
Result:

Table of performance measures

	Word 2003	OpenOffice	PDF 5.0	No changes
Page margins	0 mm	+ 3 mm	0 mm	0 mm
Ingest: sec. per file	10 sec	10 sec	15 sec	0 sec
Software costs per year	50€	0€	0€	0€
Numbering of chapters	3	N.A.	5	5
Paragraph formatting	3	2	5	5

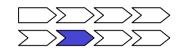
Transform Measured Values

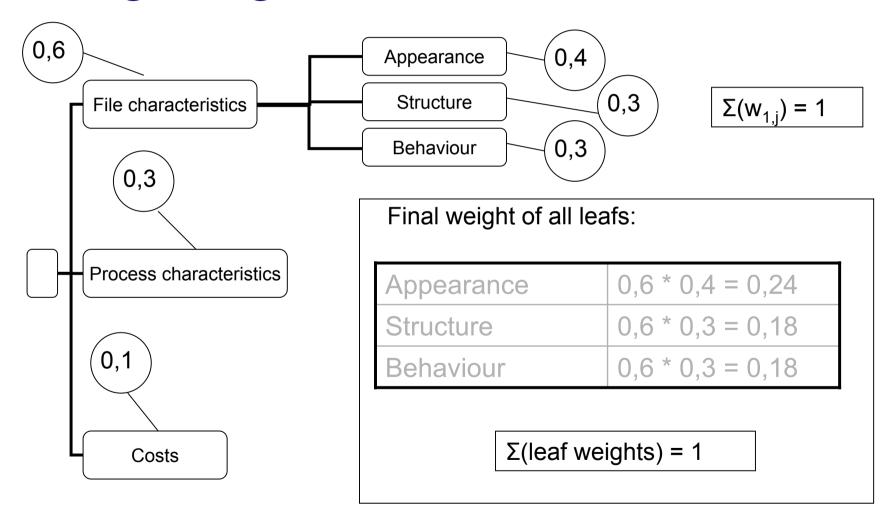
- Need to make measured values comparable
- Define transformation table

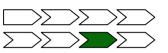

	5	4	3	2	1	N.A
Page margins	+/- 0mm	+/- 1mm	+/- 2mm	+/- 3mm	+/- 4mm	> 4mm
Ingest: sec. per file	0 -5 sec	5-10 sec	10-15sec	15-25sec	25-40sec	>.40sec
SW costs/year	0€	1-30€	31-50€	51-70€	71-100€	> 100€
Chapter numbering	5	4	3	2	1	N.A.
Paragraph formatting	5	4	3	2	1	N.A.

Transform measured Values

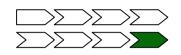
Transform measures:


	Word 2003	OpenOffice	PDF 5.0	No changes
Page borders	5	2	5	5
Ingest: sec. per file	4	4	3	5
Software costs per year	3	5	5	5
Numbering of chapters	3	N.A.	5	5
Paragraph formatting	3	2	5	5


Weighting

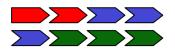

- Objectives differ in importance / priority
- Assign weights to objectives
- Basically possible right after definition of Objective Tree
- Recommended to perform after measurement and transformation
- Weights per branch level sum up to 1

Weighting

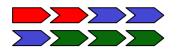


Aggregating part values

- Calculate leaf values by multiplying transformed measurements with weights
- Aggregate values per alternative
- If necessary, average or min/max over different demo-files
- Provides performance per alternative according to different branch levels, i.e. objective granularities


Final Ranking

- Ranking of alternatives
- Not-acceptable alternatives are kept in ranking
- Final sensitivity analysis regarding non measurable influences on the decision, such as:
 - expertise in a specific alternative
 - good relation to a supplier


...

Summary

- Composition of Objective Tree depends strongly on collection requirements
- Different solutions vary mainly in
 - □ Objective tree composition
 - □ Objective's weights
- A few "standard" Objective Trees may evolve
- We now have:
 - A structured approach to make accountable preservation decisions
 - □ A transparent decision process

Next steps

- Cooperating with institutions to elaborate "standard" Objective Trees
- Cooperate on generating "exhaustive" listings of file format characteristics
- Develop tool support for calculating different weighting scenarios
- Evolve into decision support system